Approximate arithmetic circuits
نویسندگان
چکیده
منابع مشابه
Approximate Inference by Compilation to Arithmetic Circuits
Arithmetic circuits (ACs) exploit context-specific independence and determinism to allow exact inference even in networks with high treewidth. In this paper, we introduce the first ever approximate inference methods using ACs, for domains where exact inference remains intractable. We propose and evaluate a variety of techniques based on exact compilation, forward sampling, AC structure learning...
متن کاملLearning Arithmetic Circuits
Graphical models are usually learned without regard to the cost of doing inference with them. As a result, even if a good model is learned, it may perform poorly at prediction, because it requires approximate inference. We propose an alternative: learning models with a score function that directly penalizes the cost of inference. Specifically, we learn arithmetic circuits with a penalty on the ...
متن کاملLazy Arithmetic Circuits
Compiling a Bayesian network into a secondary structure, such as a junction tree or arithmetic circuit allows for offline computations before observations arrive, and quick inference for the marginal of all variables. However, query-based algorithms, such as variable elimination and recursive conditioning, that compute the posterior marginal of few variables given some observations, allow pruni...
متن کاملAlgorithms for Arithmetic Circuits
Given a multivariate polynomial f(X) ∈ F[X] as an arithmetic circuit we would like to efficiently determine: 1. Identity Testing. Is f(X) identically zero? 2. Degree Computation. Is the degree of the polynomial f(X) at most a given integer d . 3. Polynomial Equivalence. Upto an invertible linear transformation of its variables, is f(X) equal to a given polynomial g(X). The algorithmic complexit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Reconfigurable and Embedded Systems (IJRES)
سال: 2020
ISSN: 2722-2608,2089-4864
DOI: 10.11591/ijres.v9.i3.pp183-200